首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:Document Classification based on Optimal Laprls
  • 本地全文:下载
  • 作者:Wang, Ziqiang ; Sun, Xia ; Zhang, Lijie
  • 期刊名称:Journal of Software
  • 印刷版ISSN:1796-217X
  • 出版年度:2013
  • 卷号:8
  • 期号:4
  • 页码:1011-1018
  • DOI:10.4304/jsw.8.4.1011-1018
  • 语种:English
  • 出版社:Academy Publisher
  • 摘要:To effectively utilize a large number of unlabeled data and a small part of labeled data in the document classification problem, a novel semi-supervised learning algorithm called optimal Laplacian regularized least square (OLapRLS) is proposed in this paper. This algorithm first obtains the data-adaptive edge weights by solving the l 1-norm optimization problem; then the normalized graph Laplacian is derived for revealing the intrinsic document manifold structure; finally, the Nyström method-based low-rank approximation method is adopted to reduce the computational complexity in manipulating the large kernel matrix. Experimental results on three well-known document datasets demonstrate the effectiveness and efficiency of the proposed OLapRLS algorithm.
  • 关键词:document classification;semi-supervised learning;optimal Laplacian regularized least square (OLapRLS);kernel low-rank approximation
国家哲学社会科学文献中心版权所有