首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:An Efficient Parallel Anomaly Detection Algorithm Based on Hierarchical Clustering
  • 本地全文:下载
  • 作者:Wei-wu, Ren ; Liang, Hu ; Kuo, Zhao
  • 期刊名称:Journal of Networks
  • 印刷版ISSN:1796-2056
  • 出版年度:2013
  • 卷号:8
  • 期号:3
  • 页码:672-679
  • DOI:10.4304/jnw.8.3.672-679
  • 语种:English
  • 出版社:Academy Publisher
  • 摘要:For the purpose of improving real time and profiles accuracy, a parallel anomaly detection algorithm based on hierarchical clustering has been proposed. Training and predicting are two busiest processes and they are parallel designed and implemented. Moreover, an abnormal cluster feature tree is built to dig anomalies from normal profiles. A series of experiment results on well-known KDD Cup 1999 data sets indicate that the improved algorithm has superior performance in both detection and real time.
  • 关键词:parallel algorithm;hierarchy clustering;abnormal cluster feature tree;normal profiles
国家哲学社会科学文献中心版权所有