首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:Inhibition/Enhancement Network Based ASR using Multiple DPF Extractors
  • 本地全文:下载
  • 作者:Hassan, Foyzul ; Kotwal, Mohammed Rokibul Alam ; Hasan, Mohammad Mahedi
  • 期刊名称:Journal of Multimedia
  • 印刷版ISSN:1796-2048
  • 出版年度:2011
  • 卷号:6
  • 期号:5
  • 页码:395-403
  • DOI:10.4304/jmm.6.5.395-403
  • 语种:English
  • 出版社:Academy Publisher
  • 摘要:This paper describes an evaluation ofInhibition/Enhancement (In/En) network for robustautomatic speech recognition (ASR). In distinctive phoneticfeatures (DPFs) based speech recognition using neuralnetwork, In/En network is needed to discriminate whetherthe DPFs dynamic patterns of trajectories are convex orconcave. The network is used to achieve categorical DPFsmovement by enhancing DPFs peak patterns (convexpatterns) and inhibiting DPFs dip patterns (concavepatterns). We have analyzed the effectiveness of In/Enalgorithm by incorporating it into a system which consists ofthree stages: a) Multilayer Neural Networks (MLNs), b)In/En Network and c) Gram-Schmidt (GS)orthogonalization. From the experiments using JapaneseNewspaper Article Sentences (JNAS) database in clean andnoisy acoustic environments, it is observed that the In/Ennetwork plays a significant role on the improvement ofphoneme recognition performance. Moreover, In/Ennetwork reduces required number of mixture componentsin Hidden Markov Models (HMMs).
  • 关键词:Articulatory Features; Hidden Markov Model; Inhibition/Enhancement Network; Local Features; Multilayer Neural Network; Distinctive Phonetic Features.
国家哲学社会科学文献中心版权所有