首页    期刊浏览 2025年02月28日 星期五
登录注册

文章基本信息

  • 标题:Strong Convex Loss Can Increase the Learning Rates of Online Learning
  • 本地全文:下载
  • 作者:Sheng, Baohuai ; Duan, Liqin ; Ye, Peixin
  • 期刊名称:Journal of Computers
  • 印刷版ISSN:1796-203X
  • 出版年度:2014
  • 卷号:9
  • 期号:7
  • 页码:1606-1611
  • DOI:10.4304/jcp.9.7.1606-1611
  • 语种:English
  • 出版社:Academy Publisher
  • 摘要:It is known that kernel regularized online learning has the advantages of low complexity and simple calculations, and thus is accompanied with slow convergence and low accuracy. Often the algorithm are designed with the help of gradient of the loss function, the complexity of the loss may influence the convergence. In this paper, we show, at some extent, the strong convexity can increase the learning rates.
  • 关键词:Online learning;Strong convex loss;Learning rates
国家哲学社会科学文献中心版权所有