首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:(l, e)-Diversity – A Privacy Preserving Model to Resist Semantic Similarity Attack
  • 本地全文:下载
  • 作者:Wang, Haiyuan ; Han, Jianmin ; Wang, Jiyi
  • 期刊名称:Journal of Computers
  • 印刷版ISSN:1796-203X
  • 出版年度:2014
  • 卷号:9
  • 期号:1
  • 页码:59-64
  • DOI:10.4304/jcp.9.1.59-64
  • 语种:English
  • 出版社:Academy Publisher
  • 摘要:Existing sensitive attributes diversity models do not capture the semantic similarity between sensitive values, so they cannot resist semantic similarity attack. To address the problem, we present a method to measure semantic similarity of a categorical sensitive attribute based on the attribute’ semantic hierarchy tree. On basis of the measurement, the paper proposes a ( l , e )-diversity model which has two constraints in each equivalence class: (1) there are at least l well-represented values; (2) any two sensitive values are not e -similar. Furthermore, the paper designs a liner-complexity maximum bucketization greedy algorithm to implement the model. Experimental results show that the anonymous data satisfied ( l , e )-diversity has a higher diversity degree than that satisfied l -diversity, so ( l , e )-diversity can protect privacy more effectively than l -diversity.
  • 关键词:Data privacy;l-diversity;(l;e)-diversity;anatomy;semantic similarity attack
国家哲学社会科学文献中心版权所有