首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:Data-driven Machinery Prognostics Approach using in a Predictive Maintenance Model
  • 本地全文:下载
  • 作者:Liao, Wenzhu ; Wang, Ying
  • 期刊名称:Journal of Computers
  • 印刷版ISSN:1796-203X
  • 出版年度:2013
  • 卷号:8
  • 期号:1
  • 页码:225-231
  • DOI:10.4304/jcp.8.1.225-231
  • 语种:English
  • 出版社:Academy Publisher
  • 摘要:Nowadays, more and more manufacturers realize the importance of adopting new maintenance technologies to enable systems to achieve near-zero downtime, so machinery prognostics that enables this paradigm shift from traditional fail-and-fix maintenance to a predict-and-prevent paradigm has arose interests from researchers. Machinery prognostics which could estimate machine condition and degradation strongly support predictive maintenance policy. This paper develops a novel data-driven machine prognostics approach to predict machine’s health condition and describe machine degradation. Based on machine’s prognostics information, a predictive maintenance model is well constructed to decide machine’s optimal maintenance threshold and maintenance cycles. Through a case study, this predictive maintenance model is verified, and the computational results show that this proposed model is efficient and practical.
  • 关键词:prognostics;predictive maintenance;cost;optimization
国家哲学社会科学文献中心版权所有