首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Hyperspectral Images Terrain Classification in Combination Spectrum DLDA Subspace
  • 本地全文:下载
  • 作者:Liu, Jing ; Liu, Yi ; Wu, Jin
  • 期刊名称:Journal of Computers
  • 印刷版ISSN:1796-203X
  • 出版年度:2014
  • 卷号:9
  • 期号:1
  • 页码:28-33
  • DOI:10.4304/jcp.9.1.28-33
  • 语种:English
  • 出版社:Academy Publisher
  • 摘要:Hyperspectral images face the problem of high dimensionality and lowsamples number, which results in unsatisfied recognition efficiency, thus dimensionalityreduction is needed before terrain classification. A novel hyperspectral imagesfeature extraction method is presented for dimensionality reduction. Firstly,take discrete Fourier transformation (DFT) of each pixel spectral curve, andcombine the amplitude spectrum and corresponding phase spectrum; then directlinear discriminant analysis (DLDA) is performed in the combination spectrumspace to extract features. Minimum distance classifier is used to evaluate thefeature extraction performance in the achievedcombination spectrum DLDA subspace. The experimental results for airbornevisible/infrared imaging spectrometer (AVIRIS) hyperspectral image show that,comparing with the spectral DLDA subspace method, the present method canimprove the terrain classification efficiency.
  • 关键词:Terrain classification;Feature subspace;Feature extraction;Hyperspectral image
国家哲学社会科学文献中心版权所有