首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:TPDA2 ALGORITHM FOR LEARNING BN STRUCTURE FROM MISSING VALUE AND OUTLIERS IN DATA MINING
  • 本地全文:下载
  • 作者:Benhard Sitohang ; G.A. Putri Saptawati
  • 期刊名称:Jurnal Informatika
  • 印刷版ISSN:1411-0105
  • 出版年度:2006
  • 卷号:7
  • 期号:2
  • 页码:108-113
  • DOI:10.9744/informatika.7.2.pp. 108-113
  • 语种:English
  • 出版社:Institute of Research and Community Outreach - Petra Christian University
  • 摘要:Three-Phase Dependency Analysis (TPDA) algorithm was proved as most efficient algorithm (which requires at most O(N4) Conditional Independence (CI) tests). By integrating TPDA with "node topological sort algorithm", it can be used to learn Bayesian Network (BN) structure from missing value (named as TPDA1 algorithm). And then, outlier can be reduced by applying an "outlier detection & removal algorithm" as pre-processing for TPDA1. TPDA2 algorithm proposed consists of those ideas, outlier detection & removal, TPDA, and node topological sort node.
  • 关键词:missing value, noisy data, BN structure, TPDA.
国家哲学社会科学文献中心版权所有