出版社:PERHIMPI (Indonesian Association of Agricultural Meteorology)
摘要:Forests play an important role in global carbon cycling, since they hold a large pool of carbon as well as potential carbon sinks and sources to the atmosphere. Accurate estimation of forest biomass is required for greenhouse gas inventories and terrestrial carbon accounting. The information on biomass is essential to assess the total and the annual capacity of forest vigor. Estimation of aboveground biomass is necessary for studying productivity, carbon cycles, nutrient allocation, and fuel accumulation in terrestrial ecosystem. The possibility that above ground forest biomass might be determined from space is a promising alternative to ground-based methods. Remote sensing has opened an effective way to estimate forest biomass and carbon. By the combination of data field measurement and allometric equation, the above ground trees biomass possible to be estimated over the large area. The objectives of this research are: (1) To estimate the above ground tree biomass and carbon stock of forest cover in Lore Lindu National Park by combination of field data observation, allometric equation and multispectral satellite image; (2) to find the equation model between parameter that determines the biomass estimation. The analysis showed that field data observation and satellite image classification influencing much on the accuracy of trees biomass and carbon stock estimation. The forest cover type A and B (natural forest with the minor timber extraction) has the higher biomass than C and D (natural forest with the major timber extraction and agro forestry), it is about 607 ton/ha and 603 ton/ha. Forest cover type C is 457 ton/ha. Forest cover type D has the lowest biomass is about 203 ton/ha. Natural forest has high biomass, because of the tropical vegetation trees heterogeneity. Forest cover D has the lowest trees biomass because its vegetation component as secondary forest with the homogeneity of cacao plantation. The forest biomass and carbon estimation for each cover type will be useful for the further equation analysis when using the remote sensing technology for estimating the total biomass and for the economic carbon analysis.Forests play an important role in global carbon cycling, since they hold a large pool of carbon as well as potential carbon sinks and sources to the atmosphere. Accurate estimation of forest biomass is required for greenhouse gas inventories and terrestrial carbon accounting. The information on biomass is essential to assess the total and the annual capacity of forest vigor. Estimation of aboveground biomass is necessary for studying productivity, carbon cycles, nutrient allocation, and fuel accumulation in terrestrial ecosystem. The possibility that above ground forest biomass might be determined from space is a promising alternative to ground-based methods. Remote sensing has opened an effective way to estimate forest biomass and carbon. By the combination of data field measurement and allometric equation, the above ground trees biomass possible to be estimated over the large area. The objectives of this research are: (1) To estimate the above ground tree biomass and carbon stock of forest cover in Lore Lindu National Park by combination of field data observation, allometric equation and multispectral satellite image; (2) to find the equation model between parameter that determines the biomass estimation. The analysis showed that field data observation and satellite image classification influencing much on the accuracy of trees biomass and carbon stock estimation. The forest cover type A and B (natural forest with the minor timber extraction) has the higher biomass than C and D (natural forest with the major timber extraction and agro forestry), it is about 607 ton/ha and 603 ton/ha. Forest cover type C is 457 ton/ha. Forest cover type D has the lowest biomass is about 203 ton/ha. Natural forest has high biomass, because of the tropical vegetation trees heterogeneity. Forest cover D has the lowest trees biomass because its vegetation component as secondary forest with the homogeneity of cacao plantation. The forest biomass and carbon estimation for each cover type will be useful for the further equation analysis when using the remote sensing technology for estimating the total biomass and for the economic carbon analysis.