首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Memory Dynamics in Attractor Networks
  • 本地全文:下载
  • 作者:Guoqi Li ; Kiruthika Ramanathan ; Ning Ning
  • 期刊名称:Computational Intelligence and Neuroscience
  • 印刷版ISSN:1687-5265
  • 电子版ISSN:1687-5273
  • 出版年度:2015
  • 卷号:2015
  • DOI:10.1155/2015/191745
  • 出版社:Hindawi Publishing Corporation
  • 摘要:As can be represented by neurons and their synaptic connections, attractor networks are widely believed to underlie biological memory systems and have been used extensively in recent years to model the storage and retrieval process of memory. In this paper, we propose a new energy function, which is nonnegative and attains zero values only at the desired memory patterns. An attractor network is designed based on the proposed energy function. It is shown that the desired memory patterns are stored as the stable equilibrium points of the attractor network. To retrieve a memory pattern, an initial stimulus input is presented to the network, and its states converge to one of stable equilibrium points. Consequently, the existence of the spurious points, that is, local maxima, saddle points, or other local minima which are undesired memory patterns, can be avoided. The simulation results show the effectiveness of the proposed method.
国家哲学社会科学文献中心版权所有