Na área biomédica, a ocorrência de dados categóricos é comum, e métodos de análise específicos para este tipo de dado são usados para revelar padrões existentes. A Análise de Correspondência é uma dessas técnicas, utilizada na análise de tabelas de contingência de grande porte. A maioria dos trabalhos publicados em periódicos brasileiros foca apenas na sua interpretação gráfica, não abordando outras potencialidades da técnica. O objetivo do trabalho é mostrar a técnica não limitada à análise gráfica, mas também utilizar estatísticas que permitem sua análise quantitativa. Exemplo mostra que a análise gráfica é enriquecida com a utilização dessas estatísticas, e que a inclusão de uma categoria com baixa ocorrência pode ser considerada como categoria suplementar devido à sua baixa contribuição à inércia. Assim, diminui-se a subjetividade na análise, sendo possível revelar a relação entre as categorias com a análise de resíduos, aspecto este não facilmente observado graficamente. Comparação com a Análise de Componentes Principais mostrou a vantagem da técnica.
Categorical variables are common in the biomedical field, and many descriptive methods have been proposed for revealing intrinsic patterns in data. Correspondence Analysis is an especially useful method for categorical data analysis of large contingency tables. Although numerous studies have been published on this method, most Portuguese-language articles have failed to explore its full potential, focusing only on graphical interpretation. The current paper reviews the method, showing that graphical analysis can be enriched by the right statistics. The article presents the mathematical basis for correspondence analysis and its most frequently used statistics. The procedure has shown that such statistics enrich symmetric map evaluation, that a low relative frequency category can be represented by supplementary category points, and that inertia contributions are highly related to residual analysis of contingency tables, not easily visualized by symmetric maps. Correspondence Analysis has proven advantageous when compared to principal components analysis.