Iron bioavailability was evaluated in three mixtures of cereals, seeds, and grains ("Human Ration"): light, regular, and homemade provided to rats. The animals received an iron depletion diet for 21 days, followed by a repletion diet containing 12 mg·kg-1 of iron for 14 days. The hemoglobin regeneration efficiency and the relative biological value did not differ between the light mixture and control group. The iron bioavailability of the light mixture of cereals, seeds, and grains and the control group were 99.99±27.62 and 80.02±36.63, respectively, while the regular and homemade mixtures of cereals, seeds, and grains showed lower iron bioavailability, 50.12±35.53 and 66.66±15.44, respectively; the iron content of the diet with light cereal mixture light was statistically similar to that of the control (ferrous sulfate 99.99±27.62). The high content of tannin (202.81±19.53 mg·100-1) in the diet with the regular cereal mixture may have contributed to its low iron bioavailability. The higher intake of soluble fiber by the animals fed the light mixture (21.15±0.92 g) was moderately correlated (r=0.5712, p=0.0018) with the concentration of propionate in the caecal bulk (65.49±11.08 µmol/g). The short chain fatty acids produced by soluble fiber fermentation, associated with the low-content of tannin may have improved iron solubility and absorption in the light cereal mixture diet. The iron bioavailability in the light mixture of cereals, seeds, and grains was similar to that of ferrous sulfate.