A seleção dos atributos a serem avaliados em uma análise sensorial é fundamental no planejamento de painéis sensoriais. O processo de seleção visa reduzir a lista de atributos a serem apresentados aos julgadores, evitando assim fadiga aos membros do painel, porém mantendo atributos significativos na caracterização das amostras avaliadas. Este artigo apresenta um método para seleção de atributos em painéis sensoriais baseados em avaliações descritivas das amostras, tais como os métodos QDA (Quantitative Descriptive Analysis) e Spectrum. O método proposto utiliza Análise de Componentes Principais para identificação dos atributos mais relevantes e então aplica Análise Discriminante para classificação das amostras em formulações distintas. O método é aplicado em um estudo de caso em que cubos de carne com molho são caracterizados em painel sensorial utilizando o método QDA. O método proposto reduz significativamente o número de atributos a serem avaliados e conduz à satisfatória acurácia de classificação das amostras em formulações.
The selection of attributes from a group of candidates to be assessed through sensory analysis is an important step when planning sensory panels. When selecting attributes, it is desirable to reduce the list of those to be presented to panelists in order to avoid fatigue, however keeping the attributes that are relevant to the sensory characterization of samples. This paper presents a multivariate method for attribute selection in descriptive sensory panels, such as those used in the QDA (Quantitative Descriptive Analysis) and Spectrum protocols. The proposed method is implemented using Principal Component Analysis and Descriptive Analysis, and it is evaluated in a case study where beef cubes in stew, used as combat ration by the American Army, are characterized in sensory panels through the Spectrum method. The method significantly reduced the number of attributes to be considered in sensory panels, while yielding satisfactory accuracy in the classification of samples.