Em ambientes de alta customização, uma grande variedade de modelos de produtos é demandada pelos consumidores. Essa condição exige uma rápida adequação dos meios produtivos às especificações do próximo modelo a ser produzido. Tal situação, contudo, pode acarretar perdas consideráveis em relação aos níveis de produção e qualidade, em decorrência da pouca habilidade dos trabalhadores nos ciclos iniciais de produção de um novo modelo. Assim, a modelagem do processo de aprendizado de trabalhadores atuando sobre cada modelo de produto pode auxiliar a gerência na alocação de modelos de produtos a equipes de trabalhadores, minimizando as perdas verificadas nos primeiros ciclos de produção. Este artigo apresenta uma metodologia baseada na utilização de curvas de aprendizagem como balizadoras da alocação de modelos de produtos a equipes de trabalhadores. Os diversos modelos de produtos são agrupados em famílias de acordo com suas características similares, permitindo uma redução na coleta de dados. A alocação das famílias às equipes é realizada através da análise das curvas de aprendizagem. Duas formas de alocação são apresentadas, de acordo com a duração da corrida de produção. A metodologia proposta é ilustrada através de um estudo de caso em uma indústria do setor calçadista.
In highly customized markets a large variety of product models are typically demanded by customers. That requires fast setup of production resources to comply with specifications of the next model to be produced. Such compliance, however, may cause considerable production and quality losses due to workers' poor performance during the initial production runs of a new model. Therefore, modeling workers' learning upon exposure to each product model may help production managers to define the best assignment scheme for models and workers, such that losses in the initial stages of production are minimized. This paper presents a methodology that uses learning curves to guide the best assignment of product models to teams of workers. Product models are first clustered into families based on their similarities, leading to a smaller data collection. Then allocation of product families to teams is carried based on the analysis of their corresponding learning curves. Two courses of action are then proposed, depending on whether the production batch will lead to longer or shorter production runs. The proposed methodology is illustrated in a case study from the shoe manufacturing industry.