首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Revised empirical likelihood
  • 本地全文:下载
  • 作者:Grendar, Marian ; Judge, George G.
  • 期刊名称:Journal of Agribusiness
  • 印刷版ISSN:0738-8950
  • 出版年度:2010
  • 出版社:Journal of Agribusiness
  • 摘要:Empirical Likelihood (EL) and other methods that operate within the Empirical Estimating Equations (E3) approach to estimation and inference are challenged by the Empty Set Problem (ESP). ESP concerns the possibility that a model set, which is data-dependent, may be empty for some data sets. To avoid ESP we return from E3 back to the Estimating Equations, and explore the Bayesian infinite-dimensional Maximum A-posteriori Probability (MAP) method. The Bayesian MAP with Dirichlet prior motivates a Revised EL (ReEL) method. ReEL i) avoids ESP as well as the convex hull restriction, ii) attains the same basic asymptotic properties as EL, and iii) its computation complexity is comparable to that of EL.
  • 关键词:empirical estimating equations;generalized minimum contrast;empirical likelihood;generalized empirical likelihood;empty set problem;convex hull restriction;estimating equations;maximum aposteriori probability
国家哲学社会科学文献中心版权所有