首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Polymeric synthetic nanoparticles for the induction of antigen-specific immunological tolerance
  • 本地全文:下载
  • 作者:Roberto A. Maldonado ; Robert A. LaMothe ; Joseph D. Ferrari
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2015
  • 卷号:112
  • 期号:2
  • 页码:E156-E165
  • DOI:10.1073/pnas.1408686111
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:SignificanceSynthetic nanoparticles containing either protein or peptide antigen and the immunosuppressant rapamycin are capable of inducing durable and specific resistance to mounting immune responses toward the antigen. This immunological tolerance operates on lymphocytes even after multiple immunogenic challenges with the antigen and adding enhancers of immune responses (adjuvants). As a result, the animals treated with these tolerogenic nanoparticles (tNPs) show reduced allergic hypersensitivity disorders, protection from disease relapse in a model of multiple sclerosis, and prevention of inhibitory antidrug antibody responses in an animal model of hemophilia A. These results show the potential for nanocarriers to modify the immunoreactivity of a given molecule by providing tolerogenic instructions to the immune system, thereby preventing or reversing pathological and neutralizing immune responses. Current treatments to control pathological or unwanted immune responses often use broadly immunosuppressive drugs. New approaches to induce antigen-specific immunological tolerance that control both cellular and humoral immune responses are desirable. Here we describe the use of synthetic, biodegradable nanoparticles carrying either protein or peptide antigens and a tolerogenic immunomodulator, rapamycin, to induce durable and antigen-specific immune tolerance, even in the presence of potent Toll-like receptor agonists. Treatment with tolerogenic nanoparticles results in the inhibition of CD4+ and CD8+ T-cell activation, an increase in regulatory cells, durable B-cell tolerance resistant to multiple immunogenic challenges, and the inhibition of antigen-specific hypersensitivity reactions, relapsing experimental autoimmune encephalomyelitis, and antibody responses against coagulation factor VIII in hemophilia A mice, even in animals previously sensitized to antigen. Only encapsulated rapamycin, not the free form, could induce immunological tolerance. Tolerogenic nanoparticle therapy represents a potential novel approach for the treatment of allergies, autoimmune diseases, and prevention of antidrug antibodies against biologic therapies.
  • 关键词:nanoparticles ; immune tolerance ; rapamycin ; immunotherapy ; anti-drug antibodies
国家哲学社会科学文献中心版权所有