The purpose of this study was to evaluate the effects of tetracycline(TC), flurbiprofen, and PDGF-BB loaded biodegradable membranes on the cell-attachment, the activity of loaded PDGF-BB, in vivo release kinetics, and guided bone regenerative potentials. To evaluate the cell attachment to membranes, the number of gingival fibroblasts attached to each membrane(10% TC, 10% flurbiprofen, 200ng/cm2 PDGF-BB loaded membranes, drug-unloaded membrane) was counted by coulter counter and the morphologic pattern of attached cells was examined under SEM. To determine whether the activity of loaded PDGF-BB is sustained, the cellular growth and survival rate of gingival fibroblasts was used for both standard PDGF-BB and loaded PDGF-BB. For evaluation of in vivo release kinetics, drug-loaded membranes were implanted on the dorsal skin of the rats. On 1, 3, 7, 10, 14, 21, and 28 days after implantation, the amount of remaining drugs were measured by HPLC assay for TC and flurbiprofen, and by γ-scintillation counter for PDGF-BBI125. For evaluation of guided regenerative potential, the amount of new bone in the calvarial defects(5mm in diameter) of the rat was measured by histomorphometry 1 and 2 weeks after implantation of membranes. The number of cells attached to the PDGF-BB loaded membrane was largest as compared with the other membranes.(p<0.05) The activity of loaded PDGF-BB was not significantly different from the activity of standard PDGF-BB.(p<0.05) After initial burst release of drug during the first 24 hours, drugs were gradually released for 4 weeks. Especially the release rate of PDGF-BB was nearly constant during 4 weeks. PDGF-BB loaded membranes(200, 400ng/cm2) were effective in guided bone regeneration as compared with drug-unloaded membrane. These results implicate that drug-loaded biodegradable membranes might be a useful for guided bone regeneration.