首页    期刊浏览 2025年01月21日 星期二
登录注册

文章基本信息

  • 标题:Incremental, Predictive Parsing with Psycholinguistically Motivated Tree-Adjoining Grammar
  • 本地全文:下载
  • 作者:Vera Demberg ; Frank Keller ; Alexander Koller
  • 期刊名称:Computational Linguistics
  • 印刷版ISSN:0891-2017
  • 电子版ISSN:1530-9312
  • 出版年度:2013
  • 卷号:39
  • 期号:4
  • 页码:1025-1066
  • DOI:10.1162/COLI_a_00160
  • 语种:English
  • 出版社:MIT Press
  • 摘要:Psycholinguistic research shows that key properties of the human sentence processor are incrementality, connectedness (partial structures contain no unattached nodes), and prediction (upcoming syntactic structure is anticipated). There is currently no broad-coverage parsing model with these properties, however. In this article, we present the first broad-coverage probabilistic parser for PLTAG, a variant of TAG that supports all three requirements. We train our parser on a TAG-transformed version of the Penn Treebank and show that it achieves performance comparable to existing TAG parsers that are incremental but not predictive. We also use our PLTAG model to predict human reading times, demonstrating a better fit on the Dundee eye-tracking corpus than a standard surprisal model.
国家哲学社会科学文献中心版权所有