首页    期刊浏览 2025年01月22日 星期三
登录注册

文章基本信息

  • 标题:Lexicon-Based Methods for Sentiment Analysis
  • 本地全文:下载
  • 作者:Maite Taboada ; Julian Brooke ; Milan Tofiloski
  • 期刊名称:Computational Linguistics
  • 印刷版ISSN:0891-2017
  • 电子版ISSN:1530-9312
  • 出版年度:2011
  • 卷号:37
  • 期号:2
  • 页码:267-307
  • DOI:10.1162/COLI_a_00049
  • 语种:English
  • 出版社:MIT Press
  • 摘要:We present a lexicon-based approach to extracting sentiment from text. The Semantic Orientation CALculator (SO-CAL) uses dictionaries of words annotated with their semantic orientation (polarity and strength), and incorporates intensification and negation. SO-CAL is applied to the polarity classification task, the process of assigning a positive or negative label to a text that captures the text's opinion towards its main subject matter. We show that SO-CAL's performance is consistent across domains and in completely unseen data. Additionally, we describe the process of dictionary creation, and our use of Mechanical Turk to check dictionaries for consistency and reliability.
国家哲学社会科学文献中心版权所有