首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:5&#x2009;G WiFi Signal-Based Indoor Localization System Using Cluster <svg xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg" style="vertical-align:-0.2811995pt" id="M1" height="13.056pt" version="1.1" viewBox="-0.0657574 -12.7748 9.16067 13.056" width="9.16067pt"><g transform="matrix(.018,0,0,-0.018,0,0)"><path id="g113-108" d="M480 416C480 431 465 448 438 448C388 448 312 383 252 330C217 299 188 273 155 237H153L257 680C262 700 263 712 253 712C240 712 183 684 97 674L92 648L126 647C166 646 172 645 163 606L23 -6L29 -12C51 -5 77 2 107 8C115 62 130 128 142 180C153 193 179 220 204 241C231 170 259 106 288 54C317 0 336 -12 358 -12C381 -12 423 2 477 80L460 100C434 74 408 54 398 54C385 54 374 65 351 107C326 154 282 241 263 299C296 332 351 377 403 377C424 377 436 372 445 368C449 366 456 368 462 375C472 386 480 402 480 416Z"/></g></svg>-Nearest Neighbor Algorithm
  • 本地全文:下载
  • 作者:Feng Yu ; Minghua Jiang ; Jing Liang
  • 期刊名称:International Journal of Distributed Sensor Networks
  • 印刷版ISSN:1550-1329
  • 电子版ISSN:1550-1477
  • 出版年度:2014
  • 卷号:2014
  • DOI:10.1155/2014/247525
  • 出版社:Hindawi Publishing Corporation
  • 摘要:Indoor localization based on existent WiFi signal strength is becoming more and more prevalent and ubiquitous. Unfortunately, the WiFi received signal strength (RSS) is susceptible by multipath, signal attenuation, and environmental changes, which is the major challenge for accurate indoor localization. To overcome these limitations, we propose the cluster -nearest neighbor (KNN) algorithm with 5&#x2009;G WiFi signal to reduce the environmental interference and improve the localization performance without additional equipment. In this paper, we propose three approaches to improve the performance of localization algorithm. For one thing, we reduce the computation effort based on the coarse localization algorithm. For another, according to the detailed analysis of the 2.4&#x2009;G and 5&#x2009;G signal fluctuation, we expand the real-time measurement RSS before matching the fingerprint map. More importantly, we select the optimal nearest neighbor points based on the proposed cluster KNN algorithm. We have implemented the proposed algorithm and evaluated the performance with existent popular algorithms. Experimental results demonstrate that the proposed algorithm can effectively improve localization accuracy and exhibit superior performance in terms of localization stabilization and computation effort.
国家哲学社会科学文献中心版权所有