首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:Application of Improved Grid Search Algorithm on SVM for Classification of Tumor Gene
  • 本地全文:下载
  • 作者:Li Wenwen ; Xing Xiaoxue ; Liu Fu
  • 期刊名称:International Journal of Multimedia and Ubiquitous Engineering
  • 印刷版ISSN:1975-0080
  • 出版年度:2014
  • 卷号:9
  • 期号:11
  • 页码:181-188
  • DOI:10.14257/ijmue.2014.9.11.18
  • 出版社:SERSC
  • 摘要:According to the merits and shortcomings of the traditional gridsearch algorithm in parameters optimization of support vector machine (SVM), an improved grid search algorithm is proposed. Dichotomous search algorithm is used to reduce target searching range. First, searching range is determined roughly, and a set of parameters are obtained. Then fine search is applied in reduction the range for searching, and searching the optimum parameters.Three kinds of famous tumor gene data set are used in the comparison experiments to validate the classification accuracy of principal component analysis (PCA)- SVM and kernel principal component analysis (KPCA)-SVM. Experiment results and data analysis shows that, comparing with traditional gridsearch algorithm, the proposed method has higher classification accuracy and less search time.
  • 关键词:Artificial intelligence; Gridsearch; Support vector machine; Tumor gene data ; set; Principal component analysis
国家哲学社会科学文献中心版权所有