首页    期刊浏览 2025年01月19日 星期日
登录注册

文章基本信息

  • 标题:Regional GDP Prediction Based on Improved BP Neural Network Model
  • 本地全文:下载
  • 作者:Zhikun Xu ; Xiaodong Wang ; Yingying Jin
  • 期刊名称:International Journal of Multimedia and Ubiquitous Engineering
  • 印刷版ISSN:1975-0080
  • 出版年度:2014
  • 卷号:9
  • 期号:4
  • 页码:51-62
  • DOI:10.14257/ijmue.2014.9.4.06
  • 出版社:SERSC
  • 摘要:In this paper, an improved BP neural network model is proposed. In the model, the momentum factor can improve the training speed and avoid falling into local minimum. Steepness factor and adaptive learning rate can improve the convergence speed. The genetic algorithm is used to solve the problem of low training speed, low accuracy of prediction and easy to fall into local minimum of BP neural network. Then the improved BP neural network model is established to predict GDP of Anhui province. The result shows that it is better than the other models which are presented in this paper on forecasting GDP of Anhui province.
  • 关键词:Prediction; GDP; BP neural network; GA; momentum; steepness; adaptive ; learning rate
国家哲学社会科学文献中心版权所有