期刊名称:Environmental Health - a Global Access Science Source
印刷版ISSN:1476-069X
电子版ISSN:1476-069X
出版年度:2004
卷号:3
期号:1
页码:11
DOI:10.1186/1476-069X-3-11
语种:English
出版社:BioMed Central
摘要:Mercury is an immunotoxic metal that induces autoimmune disease in rodents. Highly susceptible mouse strains such as SJL/N, A.SW, B10.S (H-2s) develop multiple autoimmune manifestations after exposure to inorganic mercury, including lymphoproliferation, elevated levels of autoantibodies, overproduction of IgG and IgE, and circulating immune complexes in kidney and vasculature. A few studies have examined relationships between mercury exposures and adverse immunological reactions in humans, but there is little evidence of mercury-associated autoimmunity in humans. To test the immunotoxic effects of mercury in humans, we studied communities in Amazonian Brazil with well-characterized exposures to mercury. Information was collected on diet, mercury exposures, demographic data, and medical history. Antinuclear and antinucleolar autoantibodies (ANA and ANoA) were measured by indirect immunofluorescence. Anti-fibrillarin autoantibodies (AFA) were measured by immunoblotting. In a gold mining site, there was a high prevalence of ANA and ANoA: 40.8% with detectable ANoA at ≥1:10 serum dilution, and 54.1% with detectable ANA (of which 15% had also detectable ANoA). In a riverine town, where the population is exposed to methylmercury by fish consumption, both prevalence and levels of autoantibodies were lower: 18% with detectable ANoA and 10.7% with detectable ANA. In a reference site with lower mercury exposures, both prevalence and levels of autoantibodies were much lower: only 2.0% detectable ANoA, and only 7.1% with detectable ANA. In the gold mining population, we also examined serum for AFA in those subjects with detectable ANoA (≥1:10). There was no evidence for mercury induction of this autoantibody. This is the first study to report immunologic changes, indicative of autoimmune dysfunction in persons exposed to mercury, which may also reflect interactions with infectious disease and other factors.