标题:Risk of human exposure to arsenic and other toxic elements from geophagy: trace element analysis of baked clay using inductively coupled plasma mass spectrometry
期刊名称:Environmental Health - a Global Access Science Source
印刷版ISSN:1476-069X
电子版ISSN:1476-069X
出版年度:2010
卷号:9
期号:1
页码:79
DOI:10.1186/1476-069X-9-79
语种:English
出版社:BioMed Central
摘要:Geophagy or earth-eating is common amongst some Bangladeshi women, especially those who are pregnant, both in Bangladesh and in the United Kingdom. A large proportion of the population in Bangladesh is already exposed to high concentrations of arsenic (As) and other toxic elements from drinking contaminated groundwater. Additional exposure to As and other toxic elements from non-food sources has not been adequately addressed and here we present the first study to monitor As levels in baked clay (known as sikor). Sikor samples originating from Bangladesh were digested using a microwave digester and analysed for their As, Pb, Cd, Mn, Fe and Zn levels using ICP-MS. Detailed As speciation analysis was performed using HPLC-ICP-MS. Of particular concern were the levels of As (3.8-13.1 mg kg-1), Cd (0.09-0.4 mg kg-1) and Pb (21-26.7 mg kg-1) present in the sikor samples and their possible impact on human health. Speciation analysis revealed that sikor samples contained mainly inorganic As. Modest consumption of 50 g of sikor is equivalent to ingesting 370 μg of As and 1235 μg of Pb per day, based on median concentration values. This level of sikor consumption exceeds the permitted maximum tolerable daily intake (PMTDI) of inorganic As by almost 2-fold. We conclude that sikor can be a significant source of As, Cd and Pb exposure for the Bangladeshi population consuming large quantities of this material. Of particular concern in this regard is geophagy practiced by pregnant women concurrently exposed to As contaminated drinking water. Future studies needs to evaluate the bioavailability of As and other elements from sikor and their impact on human health.
关键词:Arsenic ; Inductively Couple Plasma Mass Spectrometry ; Umbilical Cord Blood ; Toxic Element ; Unborn Baby