期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2014
卷号:111
期号:46
页码:16337-16342
DOI:10.1073/pnas.1418204111
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:SignificanceFlowering time is one of the best studied ecologically important traits under natural or human selection for adaptation of plants to specific local environments. Photoperiodic sensitivity is a major agronomic trait that tailors vegetative and reproductive growth to local climates and is thus particularly important for crop yield and quality. This study not only identifies a major quantitative trait locus underlying photoperiod sensitivity in rice (Days to heading 7, DTH7) but also demonstrates that various haplotype combinations of DTH7 with Grain number, plant height, and heading date 7 (Ghd7) and DTH8 correlate well with the flowering time and grain yield of rice varieties under diverse cultivating conditions. Our results build a foundation for breeding of high-yield rice varieties with desired photosensitivity and optimum adaptation to the target environments. Success of modern agriculture relies heavily on breeding of crops with maximal regional adaptability and yield potentials. A major limiting factor for crop cultivation is their flowering time, which is strongly regulated by day length (photoperiod) and temperature. Here we report identification and characterization of Days to heading 7 (DTH7), a major genetic locus underlying photoperiod sensitivity and grain yield in rice. Map-based cloning reveals that DTH7 encodes a pseudo-response regulator protein and its expression is regulated by photoperiod. We show that in long days DTH7 acts downstream of the photoreceptor phytochrome B to repress the expression of Ehd1, an up-regulator of the "florigen" genes (Hd3a and RFT1), leading to delayed flowering. Further, we find that haplotype combinations of DTH7 with Grain number, plant height, and heading date 7 (Ghd7) and DTH8 correlate well with the heading date and grain yield of rice under different photoperiod conditions. Our data provide not only a macroscopic view of the genetic control of photoperiod sensitivity in rice but also a foundation for breeding of rice cultivars better adapted to the target environments using rational design.