首页    期刊浏览 2024年12月12日 星期四
登录注册

文章基本信息

  • 标题:Assessing Classification Bias in Latent Class Analysis: Comparing Resubstitution and Leave-One-Out Methods
  • 本地全文:下载
  • 作者:Kroopnick, Marc H. ; Chen, Jinsong ; Choi, Jaehwa
  • 期刊名称:Journal of Modern Applied Statistical Methods
  • 出版年度:2010
  • 卷号:9
  • 期号:1
  • 页码:7
  • 出版社:Wayne State University
  • 摘要:This Monte Carlo simulation study assessed the degree of classification success associated with resubstitution methods in latent class analysis (LCA) and compared those results to those of the leaveone- out (L-O-O) method for computing classification success. Specifically, this study considered a latent class model with two classes, dichotomous manifest variables, restricted conditional probabilities for each latent class and relatively small sample sizes. The performance of resubstitution and L-O-O methods on the lambda classification index was assessed by examining the degree of bias.
  • 关键词:Resubstitution methods; multivariate classification; latent class analysis; leave-one-out; lambda classification index
国家哲学社会科学文献中心版权所有