首页    期刊浏览 2024年12月11日 星期三
登录注册

文章基本信息

  • 标题:Integrating information retrieval with distant supervision for Gene Ontology annotation
  • 本地全文:下载
  • 作者:Zhu, Dongqing ; Li, Dingcheng ; Carterette, Ben
  • 期刊名称:Database
  • 印刷版ISSN:1758-0463
  • 电子版ISSN:1758-0463
  • 出版年度:2014
  • 卷号:2014
  • DOI:10.1093/database/bau087
  • 出版社:Oxford University Press
  • 摘要:This article describes our participation of the Gene Ontology Curation task (GO task) in BioCreative IV where we participated in both subtasks: A) identification of GO evidence sentences (GOESs) for relevant genes in full-text articles and B) prediction of GO terms for relevant genes in full-text articles. For subtask A, we trained a logistic regression model to detect GOES based on annotations in the training data supplemented with more noisy negatives from an external resource. Then, a greedy approach was applied to associate genes with sentences. For subtask B, we designed two types of systems: (i) search-based systems, which predict GO terms based on existing annotations for GOESs that are of different textual granularities (i.e., full-text articles, abstracts, and sentences) using state-of-the-art information retrieval techniques (i.e., a novel application of the idea of distant supervision) and (ii) a similarity-based system, which assigns GO terms based on the distance between words in sentences and GO terms/synonyms. Our best performing system for subtask A achieves an F1 score of 0.27 based on exact match and 0.387 allowing relaxed overlap match. Our best performing system for subtask B, a search-based system, achieves an F1 score of 0.075 based on exact match and 0.301 considering hierarchical matches. Our search-based systems for subtask B significantly outperformed the similarity-based system.Database URL: https://github.com/noname2020/Bioc
国家哲学社会科学文献中心版权所有