首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Exact Solutions of the Time Fractional BBM-Burger Equation by Novel <svg xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg" style="vertical-align:-3.1173pt" id="M1" height="18.8468pt" version="1.1" viewBox="-0.0657574 -15.7295 49.6991 18.8468" width="49.6991pt"><g transform="matrix(.018,0,0,-0.018,0,0)"><path id="g113-41" d="M300 -147C201 -63 143 98 143 270S200 602 300 686L282 710C136 610 70 450 70 271V270C70 89 136 -72 282 -170L300 -147Z"/></g><g transform="matrix(.018,0,0,-0.018,6.188,0)"><path id="g113-72" d="M673 297H417L411 270C517 261 522 258 506 183L487 92C476 38 428 19 360 19C207 19 123 132 123 287C123 472 243 631 441 631C557 631 617 583 617 469L647 472C650 545 655 604 658 632C625 643 554 666 467 666C201 666 23 502 23 278C23 90 156 -16 339 -16C410 -16 501 6 569 24C566 43 567 70 573 101L589 183C604 259 607 262 667 271L673 297Z"/></g><g transform="matrix(.013,0,0,-0.013,18.421,-7.899)"><path id="g50-31" d="M310 541L304 571C290 586 211 619 185 610L80 76L131 52L310 541Z"/></g><g transform="matrix(.018,0,0,-0.018,23.613,0)"><path id="g113-48" d="M368 703H309L44 -163H104L368 703Z"/></g><g transform="matrix(.018,0,0,-0.018,30.99,0)"><use xlink:href="#g113-72"/></g><g transform="matrix(.018,0,0,-0.018,43.222,0)"><path id="g113-42" d="M275 270C275 450 212 609 64 710L45 686C145 604 203 442 203 270S147 -63 45 -147L64 -170C213 -68 275 89 275 270Z"/></g></svg>-Expansion Method
  • 本地全文:下载
  • 作者:Muhammad Shakeel ; Qazi Mahmood Ul-Hassan ; Jamshad Ahmad
  • 期刊名称:Advances in Mathematical Physics
  • 印刷版ISSN:1687-9120
  • 电子版ISSN:1687-9139
  • 出版年度:2014
  • 卷号:2014
  • DOI:10.1155/2014/181594
  • 出版社:Hindawi Publishing Corporation
  • 摘要:The fractional derivatives are used in the sense modified Riemann-Liouville to obtain exact solutions for BBM-Burger equation of fractional order. This equation can be converted into an ordinary differential equation by using a persistent fractional complex transform and, as a result, hyperbolic function solutions, trigonometric function solutions, and rational solutions are attained. The performance of the method is reliable, useful, and gives newer general exact solutions with more free parameters than the existing methods. Numerical results coupled with the graphical representation completely reveal the trustworthiness of the method.
国家哲学社会科学文献中心版权所有