首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Rating Crop Insurance Policies with Efficient Nonparametric Estimators that Admit Mixed Data Types
  • 本地全文:下载
  • 作者:Racine, Jeffrey S. ; Ker, Alan P.
  • 期刊名称:Journal of Food Distribution Research
  • 印刷版ISSN:0047-245X
  • 出版年度:2006
  • 卷号:37
  • 期号:4
  • 页码:27-39
  • 出版社:Food Distribution Research Society
  • 摘要:The identification of improved methods for characterizing crop yield densities has experienced a recent surge in activity due in part to the central role played by crop insurance in the Agricultural Risk Protection Act of 2000 (estimates of yield densities are required for the determination of insurance premium rates). Nonparametric kernel methods have been successfully used to model yield densities; however, traditional kernel methods do not handle the presence of categorical data in a satisfactory manner and have therefore tended to be applied on a county-by-county basis. By utilizing recently developed kernel methods that admit mixed data types, we are able to model the yield density jointly across counties, leading to substantial finite sample efficiency gains. Findings show that when we allow insurance companies to strategically reinsure with the government based on this novel approach they accrue significant rents.
  • 关键词:discrete data;insurance rating;kernel estimation;yield distributions
国家哲学社会科学文献中心版权所有