首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:New Expansion Formulas for a Family of the <svg xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg" style="vertical-align:-0.288pt;width:12.5px;" id="M1" height="16.35" version="1.1" viewBox="0 0 12.5 16.35" width="12.5"> <g transform="matrix(.022,-0,0,-.022,.062,16.025)"><path id="x1D706" d="M529 97q-70 -109 -136 -109q-41 0 -56 94q-23 144 -37 284q-38 -88 -99 -202.5t-93 -156.5q-26 -8 -76 -19l-9 21q71 78 145.5 193t124.5 232q-5 84 -15 128q-12 55 -29.5 75.5t-42.5 20.5q-21 0 -45 -13l-8 24q16 17 46 30t55 13q43 0 70 -46.5t40 -169.5&#xA;q27 -249 51 -392q7 -46 23 -46q24 0 70 60z"></path></g> </svg>-Generalized Hurwitz-Lerch Zeta Functions
  • 本地全文:下载
  • 作者:H. M. Srivastava ; Sébastien Gaboury
  • 期刊名称:International Journal of Mathematics and Mathematical Sciences
  • 印刷版ISSN:0161-1712
  • 电子版ISSN:1687-0425
  • 出版年度:2014
  • 卷号:2014
  • DOI:10.1155/2014/131067
  • 出版社:Hindawi Publishing Corporation
  • 摘要:We derive several new expansion formulas for a new family of the &#x3bb;-generalized Hurwitz-Lerch zeta functions which were introduced by Srivastava (2014). These expansion formulas are obtained by making use of some important fractional calculus theorems such as the generalized Leibniz rules, the Taylor-like expansions in terms of different functions, and the generalized chain rule. Several (known or new) special cases are also considered.
国家哲学社会科学文献中心版权所有