首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:A Large-Scale Network Data Analysis via Sparse and Low Rank Reconstruction
  • 本地全文:下载
  • 作者:Liang Fu Lu ; Zheng-Hai Huang ; Mohammed A. Ambusaidi
  • 期刊名称:Discrete Dynamics in Nature and Society
  • 印刷版ISSN:1026-0226
  • 电子版ISSN:1607-887X
  • 出版年度:2014
  • 卷号:2014
  • DOI:10.1155/2014/323764
  • 出版社:Hindawi Publishing Corporation
  • 摘要:With the rapid growth of data communications in size and complexity, the threat of malicious activities and computer crimes has increased accordingly as well. Thus, investigating efficient data processing techniques for network operation and management over large-scale network traffic is highly required. Some mathematical approaches on flow-level traffic data have been proposed due to the importance of analyzing the structure and situation of the network. Different from the state-of-the-art studies, we first propose a new decomposition model based on accelerated proximal gradient method for packet-level traffic data. In addition, we present the iterative scheme of the algorithm for network anomaly detection problem, which is termed as NAD-APG. Based on the approach, we carry out the intrusion detection for packet-level network traffic data no matter whether it is polluted by noise or not. Finally, we design a prototype system for network anomalies detection such as Probe and R2L attacks. The experiments have shown that our approach is effective in revealing the patterns of network traffic data and detecting attacks from large-scale network traffic. Moreover, the experiments have demonstrated the robustness of the algorithm as well even when the network traffic is polluted by the large volume anomalies and noise.
国家哲学社会科学文献中心版权所有