摘要:To improve the human-computer interaction (HCI) to be as good as human-human interaction, building an efficient approach for human emotion recognition is required. These emotions could be fused from several modalities such as facial expression, hand gesture, acoustic data, and biophysiological data. In this paper, we address the frame-based perception of the universal human facial expressions (happiness, surprise, anger, disgust, fear, and sadness), with the help of several geometrical features. Unlike many other geometry-based approaches, the frame-based method does not rely on prior knowledge of a person-specific neutral expression; this knowledge is gained through human intervention and not available in real scenarios. Additionally, we provide a method to investigate the performance of the geometry-based approaches under various facial point localization errors. From an evaluation on two public benchmark datasets, we have found that using eight facial points, we can achieve the state-of-the-art recognition rate. However, this state-of-the-art geometry-based approach exploits features derived from 68 facial points and requires prior knowledge of the person-specific neutral expression. The expression recognition rate using geometrical features is adversely affected by the errors in the facial point localization, especially for the expressions with subtle facial deformations.