首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:Superwetting of TiO2 by light-induced water-layer growth via delocalized surface electrons
  • 本地全文:下载
  • 作者:Kunyoung Lee ; QHwan Kim ; Sangmin An
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2014
  • 卷号:111
  • 期号:16
  • 页码:5784-5789
  • DOI:10.1073/pnas.1319001111
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Titania, which exhibits superwetting under light illumination, has been widely used as an ideal material for environmental solution such as self-cleaning, water-air purification, and antifogging. There have been various studies to understand such superhydrophilic conversion. The origin of superwetting has not been clarified in a unified mechanism yet, which requires direct experimental investigation of the dynamic processes of water-layer growth. We report in situ measurements of the growth rate and height of the photo-adsorbed water layers by tip-based dynamic force microscopy. For nanocrystalline anatase and rutile TiO2 we observe light-induced enhancement of the rate and height, which decrease after O2 annealing. The results lead us to confirm that the long-range attraction between water molecules and TiO2, which is mediated by delocalized electrons in the shallow traps associated with O2 vacancies, produces photo-adsorption of water on the surface. In addition, molecular dynamics simulations clearly show that such photo-adsorbed water is critical to the zero contact angle of a water droplet spreading on it. Therefore, we conclude that this "water wets water" mechanism acting on the photo-adsorbed water layers is responsible for the light-induced superwetting of TiO2. Similar mechanism may be applied for better understanding of the hydrophilic conversion of doped TiO2 or other photo-catalytic oxides.
国家哲学社会科学文献中心版权所有