摘要:We consider the relation between strategy-proofness of resolute (single-valued) social choice functions and its property which we call Non-negative association property (NNAP) when individual preferences over infinite number of alternatives are continuous, and the set of alternatives is a metric space. NNAP is a weaker version of Strong positive association property (SPAP) of Muller and Satterthwaite(1977). Barbera and Peleg(1990) showed that strategy-proofness of resolute social choice functions implies Modified strong positive association property (MSPAP). But MSPAP is not equivalent to strategy-proofness. We shall show that strategy-proofness and NNAP are equivalent for resolute social choice functions with continuous preferences.