首页    期刊浏览 2025年01月06日 星期一
登录注册

文章基本信息

  • 标题:Managing Emergencies Optimally Using a Random Neural Network-Based Algorithm
  • 本地全文:下载
  • 作者:Qing Han
  • 期刊名称:Future Internet
  • 电子版ISSN:1999-5903
  • 出版年度:2013
  • 卷号:5
  • 期号:4
  • 页码:515-534
  • DOI:10.3390/fi5040515
  • 语种:English
  • 出版社:MDPI Publishing
  • 摘要:Emergency rescues require that first responders provide support to evacuate injured and other civilians who are obstructed by the hazards. In this case, the emergency personnel can take actions strategically in order to rescue people maximally, efficiently and quickly. The paper studies the effectiveness of a random neural network (RNN)-based task assignment algorithm involving optimally matching emergency personnel and injured civilians, so that the emergency personnel can aid trapped people to move towards evacuation exits in real-time. The evaluations are run on a decision support evacuation system using the Distributed Building Evacuation Simulator (DBES) multi-agent platform in various emergency scenarios. The simulation results indicate that the RNN-based task assignment algorithm provides a near-optimal solution to resource allocation problems, which avoids resource wastage and improves the efficiency of the emergency rescue process.
  • 关键词:rescuers; random neural network (RNN); task assignment
国家哲学社会科学文献中心版权所有