首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:ELECTROCARDIOGRAM FOR BIOMETRICS BY USING ADAPTIVE MULTILAYER GENERALIZED LEARNING VECTOR QUANTIZATION (AMGLVQ): INTEGRATING FEATURE EXTRACTION AND CLASSIFICATION
  • 本地全文:下载
  • 作者:Elly Matul Imah ; Wisnu Jatmiko ; T. Basaruddin
  • 期刊名称:International Journal on Smart Sensing and Intelligent Systems
  • 印刷版ISSN:1178-5608
  • 出版年度:2013
  • 卷号:6
  • 期号:5
  • 页码:1891-1917
  • 出版社:Massey University
  • 摘要:Electrocardiogram (ECG) signal for human identity recognition is a new area on biometrics research. The ECG is a vital signal of human body, unique, robustness to attack, universality and permanence, difference to others traditional biometrics technic. This study also proposes Adaptive Multilayer Generalized Learning Vector Quantization (AMGLVQ), that integrating feature extraction and classification method. The experiments shown that AMGLVQ can improve the accuracy of classification better than SVM or back-propagation NN and also able to handle some problems of heartbeat classification: imbalanced data set, inconsistency between feature extraction and classification and detecting unknown data on testing phase
国家哲学社会科学文献中心版权所有