摘要:Tower shadow and wind shear contribute to periodic fluctuations in electrical power output of a wind turbine generator. The frequency of the periodic fluctuations is 𝑛 times the blade rotational frequency 𝑝, where 𝑛
is the number of blades. For three-bladed wind turbines, this inherent characteristic is known as the 3𝑝 effect. In a weak-power system, it results in voltage fluctuation or flicker at the point of common coupling of the wind turbine to the grid. The phenomenon is important to model so as to evaluate the flicker magnitude at the design level. Hence, the paper aims to develop a detailed time-domain upwind fixed speed wind turbine model which includes the turbine's aerodynamic, mechanical, electrical, as well as tower shadow and wind shear components. The model allows users to input factors such as terrain, tower height, and tower diameter to calculate the 3𝑝 oscillations. The model can be expanded to suit studies involving variable speed wind turbines. Six case studies demonstrate how the model can be used for studying wind turbine interconnection and voltage flicker analysis. Results indicate that the model performs as expected.