期刊名称:International Journal of Distributed Sensor Networks
印刷版ISSN:1550-1329
电子版ISSN:1550-1477
出版年度:2014
卷号:2014
DOI:10.1155/2014/542764
出版社:Hindawi Publishing Corporation
摘要:Sensor data is structured and generally lacks of meaning by itself, but life-logging data (time, location, etc.) out of sensor data can be utilized to create lots of meaningful information combined with social data from social networks like Facebook and Twitter. There have been many platforms to produce meaningful information and support human behavior and context-awareness through integrating diverse mobile, social, and sensing input streams. The problem is that these platforms do not guarantee the performance in terms of the processing time and even let the accuracy of output data be addressed by new studies in each area where the platform is applied. Thus, this study proposes an improved platform which builds a knowledge base for context awareness by applying distributed and parallel computing approach considering the characteristics of sensor data that is collected and processed in real-time, and compares the proposed platform with existing platforms in terms of performance. The experiment shows the proposed platform is an advanced platform in terms of processing time. We reduce the processing time by 40% compared with existing platform. The proposed platform also guarantees the accuracy compared with existing platform.