期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2013
卷号:110
期号:52
页码:21136-21141
DOI:10.1073/pnas.1316839110
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Restriction factors are effectors of the innate immune response to viral pathogens that inhibit viral replication by operating as molecular barriers to steps of the viral life cycle. The restriction factor SAMHD1 blocks lentiviral reverse transcription in myeloid cells and resting CD4+ T cells. Many lineages of lentiviruses, including HIV-2 and other simian immunodeficiency viruses, encode accessory genes that serve to counteract host SAMHD1 restriction by causing degradation of the antiviral factor. The viral accessory protein Vpr is responsible for SAMHD1 degradation in some lineages of lentiviruses, whereas in others the related protein Vpx assumes this task. However, HIV-1 has no SAMHD1 degradation capability, leading to questions about the selective advantage of this activity. We use an evolutionary approach to examine the importance of SAMHD1 antagonism for viral fitness by studying adaptation to host SAMHD1 in natural simian immunodeficiency virus infections of African Green Monkeys. We identified multiple SAMHD1 haplotypes in African Green Monkeys and find that the vpr gene from different strains of Simian Immunodeficiency Virus has adapted to the polymorphisms of the African Green Monkey population in which it is found. Such evidence of viral adaptation to host restriction indicates that SAMHD1 antagonism is actively maintained in natural infections and that this function must be advantageous to viral fitness, despite its absence in HIV-1.