首页    期刊浏览 2024年12月11日 星期三
登录注册

文章基本信息

  • 标题:TALEN-engineered AR gene rearrangements reveal endocrine uncoupling of androgen receptor in prostate cancer
  • 本地全文:下载
  • 作者:Michael D. Nyquist ; Yingming Li ; Tae Hyun Hwang
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2013
  • 卷号:110
  • 期号:43
  • 页码:17492-17497
  • DOI:10.1073/pnas.1308587110
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Androgen receptor (AR) target genes direct development and survival of the prostate epithelial lineage, including prostate cancer (PCa). Thus, endocrine therapies that inhibit the AR ligand-binding domain (LBD) are effective in treating PCa. AR transcriptional reactivation is central to resistance, as evidenced by the efficacy of AR retargeting in castration-resistant PCa (CRPC) with next-generation endocrine therapies abiraterone and enzalutamide. However, resistance to abiraterone and enzalutamide limits this efficacy in most men, and PCa remains the second-leading cause of male cancer deaths. Here we show that AR gene rearrangements in CRPC tissues underlie a completely androgen-independent, yet AR-dependent, resistance mechanism. We discovered intragenic AR gene rearrangements in CRPC tissues, which we modeled using transcription activator-like effector nuclease (TALEN)-mediated genome engineering. This modeling revealed that these AR gene rearrangements blocked full-length AR synthesis, but promoted expression of truncated AR variant proteins lacking the AR ligand-binding domain. Furthermore, these AR variant proteins maintained the constitutive activity of the AR transcriptional program and a CRPC growth phenotype independent of full-length AR or androgens. These findings demonstrate that AR gene rearrangements are a unique resistance mechanism by which AR transcriptional activity can be uncoupled from endocrine regulation in CRPC.
国家哲学社会科学文献中心版权所有