首页    期刊浏览 2024年12月12日 星期四
登录注册

文章基本信息

  • 标题:A Note on Bivariate Smoothing for Two-Dimensional Functional Data
  • 本地全文:下载
  • 作者:Andrada Ivanescu
  • 期刊名称:International Journal of Statistics and Probability
  • 印刷版ISSN:1927-7032
  • 电子版ISSN:1927-7040
  • 出版年度:2013
  • 卷号:2
  • 期号:2
  • 页码:102
  • DOI:10.5539/ijsp.v2n2p102
  • 出版社:Canadian Center of Science and Education
  • 摘要:In this paper we study a bivariate smoothing approach for estimating multiple functional parameters for functional data with a two-dimensional domain. We present a penalized regression framework for smoothing with the purpose to: (a) facilitate the estimation of the smooth overall bivariate mean function of two-dimensional functional data, (b) enable the estimation of the functional effect of a scalar covariate, (c) accommodate completely or incompletely sampled data, (d) implement the fitting approach using available statistical software, and (e) construct pointwise approximate confidence intervals for multiple bivariate functional parameters. Implementation results from simulation studies show that these methods perform very well in practice. We illustrate the usefulness of the bivariate smoothing approach to several real datasets, including applications to electricity demand.
国家哲学社会科学文献中心版权所有