首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Deterministic Approximate Counting for Degree-2 Polynomial Threshold Functions
  • 本地全文:下载
  • 作者:Anindya De ; Ilias Diakonikolas ; Rocco Servedio
  • 期刊名称:Electronic Colloquium on Computational Complexity
  • 印刷版ISSN:1433-8092
  • 出版年度:2013
  • 卷号:2013
  • 出版社:Universität Trier, Lehrstuhl für Theoretische Computer-Forschung
  • 摘要:

    We give a {\em deterministic} algorithm for approximately computing the fraction of Boolean assignments that satisfy a degree-2 polynomial threshold function. Given a degree-2 input polynomial p(x1xn) and a parameter 0">\eps0, the algorithm approximatesPrx−11n[p(x)0]to within an additive \eps in time \poly(n2\poly(1\eps)) . Note that it is NP-hard to determine whether the above probability is nonzero, so any sort of multiplicative approximation is almost certainly impossible even for efficient randomized algorithms. This is the first deterministic algorithm for this counting problem in which the running time is polynomial in n for \eps=o(1). For ``regular'' polynomials p (those in which no individual variable's influence is large compared to the sum of all n variable influences) our algorithm runs in \poly(n1\eps) time. The algorithm also runs in \poly(n1\eps) time to approximate PrxN(01)n[p(x)0] to within an additive \eps, for any degree-2 polynomial p.

    As an application of our counting result, we give a deterministic FPT multiplicative (1\eps)-approximation algorithm to approximate the k-th absolute moment \Ex−11n[p(x)k] of a degree-2 polynomial. The algorithm's running time is of the form \poly(n)f(k1\eps) .

  • 关键词:deterministic approximate counting; Polynomial threshold functions
国家哲学社会科学文献中心版权所有