首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Matching-Vector Families and LDCs Over Large Modulo
  • 本地全文:下载
  • 作者:Zeev Dvir ; Guangda Hu
  • 期刊名称:Electronic Colloquium on Computational Complexity
  • 印刷版ISSN:1433-8092
  • 出版年度:2013
  • 卷号:2013
  • 出版社:Universität Trier, Lehrstuhl für Theoretische Computer-Forschung
  • 摘要:

    We prove new upper bounds on the size of families of vectors in \Znm with restricted modular inner products, when m is a large integer. More formally, if u1ut\Znm and v1vt\Znm satisfy uivi0(modm) and uivj0(modm) for all i=j[t] , we prove that tO(mn2+847) . This improves a recent bound of tmn2+O(log(m)) by \cite{BDL13} and is the best possible up to the constant 847 when m is sufficiently larger than n.

    The maximal size of such families, called `Matching-Vector families', shows up in recent constructions of locally decodable error correcting codes (LDCs) and determines the rate of the code. Using our result we are able to show that these codes, called Matching-Vector codes, must have encoding length at least K1918 for K-bit messages, regardless of their query complexity. This improves a known super linear bound of K2(logK) proved in \cite{DGY11}.

  • 关键词:Fourier analysis; Locally decodable codes; matching vector families
国家哲学社会科学文献中心版权所有