首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:Combined Mining Approach to Generate Patterns for Complex Data
  • 本地全文:下载
  • 作者:Sumit Kumar ; Sweety ; Manish Kumar
  • 期刊名称:Computer Science & Information Technology
  • 电子版ISSN:2231-5403
  • 出版年度:2013
  • 卷号:3
  • 期号:6
  • 页码:91-97
  • DOI:10.5121/csit.2013.3609
  • 出版社:Academy & Industry Research Collaboration Center (AIRCC)
  • 摘要:In Data mining applications, which often involve complex data like multiple heterogeneous data sources, user preferences, decision-making actions and business impacts etc., the complete useful information cannot be obtained by using single data mining method in the form of informative patterns as that would consume more time and space, if and only if it is possible to join large relevant data sources for discovering patterns consisting of various aspects of useful information. We consider combined mining as an approach for mining informative patterns from multiple data-sources or multiple-features or by multiple-methods as per the requirements. In combined mining approach, we applied Lossy-counting algorithm on each data-source to get the frequent data item-sets and then get the combined association rules. In multi-feature combined mining approach, we obtained pair patterns and cluster patterns and then generate incremental pair patterns and incremental cluster patterns, which cannot be directly generated by the existing methods. In multi-method combined mining approach, we combine FP-growth and Bayesian Belief Network to make a classifier to get more informative knowledge
  • 关键词:Association Rule Mining; Lossy-Counting Algorithm; Incremental Pair-Patterns; Incremental ;Cluster-Patterns; FP-growth; Bayesian Belief Network
国家哲学社会科学文献中心版权所有