首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:A Novel Hybrid Framework for Reconstructing Gene Regulatory Networks
  • 本地全文:下载
  • 作者:Bin Yang ; Mingyan Jiang ; Yuehui Chen
  • 期刊名称:International Journal of Hybrid Information Technology
  • 印刷版ISSN:1738-9968
  • 出版年度:2013
  • 卷号:6
  • 期号:5
  • 出版社:SERSC
  • 摘要:Much effect has been devoted over the past decade to inference of gene regulatory networks (GRNs). However, the previous methods infer GRNs containing large amount of false positive edges, which could result in awful influence on biological analysis. In this study, we present a novel hybrid framework to improve the accuracy of GRN inference. In our method, network topologies from linear and nonlinear ordinary differential equation (ODE) models are integrated. The additive tree models are proposed for identification of linear/nonlinear models. We also propose a new criterion function that sparse and relevant terms are considered while inferring linear and nonlinear models. Benchmark datasets from Dialogue for Reverse Engineering Assessments and Methods challenge and real biological dataset from SOS DNA repair network in Escherichia coli are used to test the validity of our method. Results reveal that our proposed method can improve the prediction accuracy of GRN inference effectively and performs better than other popular methods
  • 关键词:gene regulatory network; linear/nonlinear models; ordinary differential ;equation; criterion function; the additive tree models
国家哲学社会科学文献中心版权所有