期刊名称:International Journal of Mathematics and Mathematical Sciences
印刷版ISSN:0161-1712
电子版ISSN:1687-0425
出版年度:2004
卷号:2004
DOI:10.1155/S0161171204210365
出版社:Hindawi Publishing Corporation
摘要:Using a functional inequality, the essential spectrum and eigenvalues are estimated for Laplace-type operators on Riemannian vector bundles. Consequently, explicit upper bounds are obtained for the dimension of the corresponding L 2-harmonic sections. In particular, some known results concerning Gromov's theorem and the L 2-Hodge decomposition are considerably improved.