期刊名称:International Journal of Advanced Research In Computer Science and Software Engineering
印刷版ISSN:2277-6451
电子版ISSN:2277-128X
出版年度:2012
卷号:2
期号:8
出版社:S.S. Mishra
摘要:Feature clustering is a powerful method to reduce the dimensionality of feature vectors for text classification. We propose a fuzzy similarity-based self-constructing algorithm for feature clustering. The words in the feature vector of a document set are grouped into clusters, based on similarity test. Words that are similar to each other are grouped into the same cluster. Each cluster is characterized by a membership function with statistical mean and deviation. When all the words have been fed in, a desired number of clusters are formed automatically. We then have one extracted feature for each cluster. The extracted feature, corresponding to a cluster, is a weighted combination of the words contained in the cluster. By this algorithm, the derived membership functions match closely with and describe properly the real distribution of the training data. Besides, the user need not specify the number of extracted features in advan ce, and trial-and-error for determining the appropriate number of extracted features can then be avoided. Experimental results show that our method can run faster and obtain better extracted features than other methods
关键词:fuzzy; training da ta; cluster; membership function