首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:A Hybrid De-Noising Method on LASCA Images of Blood Vessels
  • 本地全文:下载
  • 作者:Cong Wu ; Nengyun Feng ; Koichi Harada
  • 期刊名称:Journal of Signal and Information Processing
  • 印刷版ISSN:2159-4465
  • 电子版ISSN:2159-4481
  • 出版年度:2012
  • 卷号:3
  • 期号:1
  • 页码:92-97
  • DOI:10.4236/jsip.2012.31012
  • 出版社:Scientific Research Publishing
  • 摘要:A de-noising approach is proposed that based on the combination of wiener filtering, nonlinear filtering and wavelet fusion, which de-noise the LASCA (LAser Speckle Contrast Analysis) image of blood vessels in Small Animals. The approach first performs laser spectral contrast analysis on brain blood flow in rats, get their spatial and temporal contrast images. Then, a de-noising filtering method is proposed to deal with noise in LASCA. The image restoration is achieved by applying the proposed admixture filtering, and the subjective estimation and objective estimation are given to the de-noising images. As our experimental results shown, the proposed method provides clearer subjective sense and improved to over 25 db for PSNR.
  • 关键词:Brain Blood Flow; Wavelet Fusion; Hybrid Filtering; Laser Speckle Contrast Imaging
国家哲学社会科学文献中心版权所有