期刊名称:Journal of Software Engineering and Applications
印刷版ISSN:1945-3116
电子版ISSN:1945-3124
出版年度:2012
卷号:5
期号:7
页码:467-471
DOI:10.4236/jsea.2012.57053
出版社:Scientific Research Publishing
摘要:The similarity metric in traditional content based 3D model retrieval method mainly refers the distance metric algorithm used in 2D image retrieval. But this method will limit the matching breadth. This paper proposes a new retrieval matching method based on case learning to enlarge the retrieval matching scope. In this method, the shortest path in Graph theory is used to analyze the similarity how the nodes on the path between query model and matched model effect. Then, the label propagation method and k nearest-neighbor method based on case learning is studied and used to improve the retrieval efficiency based on the existing feature extraction.