首页    期刊浏览 2024年12月13日 星期五
登录注册

文章基本信息

  • 标题:Conditional Value-at-Risk for Random Immediate Reward Variables in Markov Decision Processes
  • 本地全文:下载
  • 作者:Masayuki Kageyama ; Takayuki Fujii ; Koji Kanefuji
  • 期刊名称:American Journal of Computational Mathematics
  • 印刷版ISSN:2161-1203
  • 电子版ISSN:2161-1211
  • 出版年度:2011
  • 卷号:1
  • 期号:3
  • 页码:183-188
  • DOI:10.4236/ajcm.2011.13021
  • 出版社:Scientific Research Publishing
  • 摘要:We consider risk minimization problems for Markov decision processes. From a standpoint of making the risk of random reward variable at each time as small as possible, a risk measure is introduced using conditional value-at-risk for random immediate reward variables in Markov decision processes, under whose risk measure criteria the risk-optimal policies are characterized by the optimality equations for the discounted or average case. As an application, the inventory models are considered.
  • 关键词:Markov Decision Processes; Conditional Value-at-Risk; Risk Optimal Policy; Inventory Model
国家哲学社会科学文献中心版权所有